Chapter 16: Python Web Development with Flask

Contents
Chapter 16: Python Web Development with FIask.......ccooiiiiiiiiiiiiiiiic e 1
I 0 PP 1
LA = L TR = T PP 1
B = 1 S AV O g Vo o = PP 2
Tutorial 1: Getting Started with Flask - Hello World ..o 3
Tutorial 2: ANOther ROULE ... e a e 4
Tutorial 31 Variables ... e 5
Tutorial 4: Render HTML with Jinja2 Templatesccoviiiiiiii s 6
Tutorial 5: Calculator Project ..o 8
ASSIGNMENT SUDMISSION .. .ttt e e s e s s s s s e s e raaaanans 11
] |
. -
MY No Al use.

Time required: 120 minutes

HTML

If you are not familiar with HTML, this is a good time to start. Here are some tutorials to get
you started on the basics.

e https://www.w3schools.com/html/htm| basic.asp

e https://www.w3schools.com/html/html elements.asp

e https://www.w3schools.com/html/html| attributes.asp

e https://www.w3schools.com/html/htm| headings.asp

e https://www.w3schools.com/html/html| paragraphs.asp

What is Flask?

Flask is a full stack development framework using MVC (Model, View, Controller)

Python Web Server with Flask Page 1 of 11 Revised: 3/8/2025

https://www.w3schools.com/html/html_basic.asp
https://www.w3schools.com/html/html_elements.asp
https://www.w3schools.com/html/html_attributes.asp
https://www.w3schools.com/html/html_headings.asp
https://www.w3schools.com/html/html_paragraphs.asp

e The three components of the MVC pattern are decoupled and they are responsible for
different things:

¢ Model: manages the data and defines rules and behaviors. It represents the
business logic of the application. The data can be stored in the Model itself or in a
database (only the Model has access to the database).

e View: presents the data to the user. A View can be any kind of output
representation: a HTML page, a chart, a table, or even a simple text output. A View
should never call its own methods; only a Controller should do it.

e Controller accepts user’s inputs and delegates data representation to a View and
data handling to a Model.

Since Model, View and Controller are decoupled, each one of the three can be extended,
modified, and replaced without having to rewrite the other two.

The Flask MVC model

Model: SQLite
View: HTML CSS pages
Controller: Flask Py files

https://www.fullstackpython.com/table-of-contents.html

Flask is a web application framework written in Python. Armin Ronacher, who leads an
international group of Python enthusiasts named Pocco, develops it.

Flask is a micro-framework developed in Python that provides only the essential
components - things like routing, request handling, and sessions. Flask is considered
“beginner friendly” for someone wanting to get started with active web site development.

It provides you with libraries, tools, and modules to develop web applications like a blog,
wiki, or even a commercial website.

Micro-frameworks are the opposite of full-stack frameworks, which also offer additional
modules for features such as authentication, database ORM, input validation and
sanitization, etc.

Flask is known as a micro-framework because it is lightweight and only provides
components that are essential, such as routing, request handling, sessions, and so on. For
the other functionalities such as data handling, the developer can write a custom module or

Python Web Server with Flask Page 2 of 11 Revised: 3/8/2025

https://www.fullstackpython.com/table-of-contents.html

use an extension. This approach avoids unnecessary boilerplate code, which is not even
being used.

Tutorial 1: Getting Started with Flask - Hello World

We will build the traditional Hello World project with Flask.
1. Install Flask: pip install flask
2. Create a folder for your project.

Add the following code to your project.

LU

LU

$ pip install flask
9l # From the flask library, import the Flask class
10| from flask import Flask

12| # Create an instance of the flask class
13l app = Flask(_ name)

Route decorator tells Flask which UERL
Wwill trigger our function
18| # Go to the home or root page
http://127.0.0.,1:5000/
Bapp.route ("/™)
21| def hello world():
22 # Thiz html is returned to our browser
SR S Moo= =T T~ Tl T 1 oy T

23 return pxHello, World!</p

26| # Start the flask application
2T7|1if mname == " main ":
28 app.runi)

*/" URL is bound with hello_world() function. When the home page of the webserver is
opened in the browser, the output of this function will be rendered accordingly.

Web frameworks provide routing technique so that user can remember the URLs. It is useful
to access the web page directly without navigating from the Home page. It is done through
the following route() decorator, to bind the URL to a function.

Python Web Server with Flask Page 3 of 11 Revised: 3/8/2025

Functions like hello_world() that handle URL’s are called view functions. The return value
of this function is the response the client receives, typically through a web browser

Decorator to route URL
@app.route ("/™)
Binding to the function of the route
def hello world() :
return "<p>hello world</p>"

The Flask application is started by calling the run() function.

In VSCode, you will see the following.

* Serving Flask app 'Hgilo_f1;5k_1; {lazw loading}
* Environment: production

Use a production WSGI server instead.
* Debug mode: off
* Running on http://127.8.8.1:5808/ (Press CTRL+C to quit)

CTRL Click on the URL to view the web page.

Bookmarks bt 127.0.0.1:5000/ x

C @ O O 127.0.0.1:5000

Hello, World!

Tutorial 2: Another Route

In this one we add debugging to the app.run command.

app.run (debug=True)

We can edit and save code while the web server is running. When the code is saved, the
web server automatically reloads the page.

In VSCode > Run > Run Without Debugging

We added another route. /bye will give us the URL of http://127.0.0.1:5000/bye

Python Web Server with Flask Page 4 of 11 Revised: 3/8/2025

FETL T

hellc flask Z.py

4 d:

5 e: My first Python Flask web application

6 ed debugging, this automatically reloads the web =server
T er we modify and =save the code

f he program from the command line, Idle,

] om VSCode without debugging

mrere

11| # pip install flask

1Z|# From the flask library, import the Flask class
13| from flask import Flask

14| # Create a Flask ohijesct

15| app = Flask(_ name)

4
will trigger our function

| # Go to the home or root page
http://127.0.0.1:5000/
Bapp.routce ("/ ™)

def hello world():

4 # Thiz html is returned to our browser
= return "<p>xHello, World!</p="
)

gl # http://fL127.0.0.1:5000/bye
49| @app.route ("/ye")
def say _bye():

[T % Y N T I B O I

31 # Thiz html is returned to our browser
32 return "<prBye</p>"
] Start the flask application

debug=True will reload the application
as changes are made and saved

38|1if _ mname = "_ main ":

39 app.ran (debug=Trus)

[a}]

Tutorial 3: Variables

Variables in Flask are used to build a URL dynamically by adding the variable parts to the
rule parameter. This is called a dynamic route. This variable part is marked as <variable>.
It is passed as keyword argument to the function.

The parameter of route() decorator contains the variable part attached to the URL "/hello"
as an argument. If a URL like http://localhost:5000/hello/Bill is entered then "Bill" will be
passed to the hello() function as an argument.

Python Web Server with Flask Page 5 of 11 Revised: 3/8/2025

Add the following code to the project.

pip install flask

From the flask library, import the Flask class
flask Flask, request

11| # Create a Flask obiject

12| app = Flask(_ name)

The above code add the request import.

Eouting the decorator function hello name
http://127.0.0.1:5000/hello/YourName
Bapp.route (' /hello/<nams>")

hello name (name) :

f"<hl>Hello {name}!<hl/>"

This new route display the name typed in at the end of the URL

"gn

@app.route(/)

hello_world():

user_agent = request.headers.get("User-Agent")

return ¥"""<h2>Hello, World!</h2>

<p>Your browser is {user_agent}</p>

This change to the default route returns the browser type.

Example run:

<_

127.0.0.1:53000/

Hello Bill!

C @ O DO 127.0.0.1:5000/hello/Bill

Tutorial 4: Render HTML with Jinja2 Templates

Flask uses the Jinja2 template engine for rendering templates.

Python Web Server with Flask Page 6 of 11

Revised: 3/8/2025

The function render_template() is used to render a Jinja2 template to an HTML page for
display on web browser. In this example, the template is simply an HTML file (which does
not require rendering). A Jinja2 template may contain expression, statement, and other
features.

Make the following changes to our project.
1. Create a folder named: templates
2. In that folder, create an html file named: hello.html

3. Add the following to the hello.html file.

I8 < !DOCTYPE html:

#d <html lang="en"=>

LY <head>

5 <meta charset="utf-3">
& ¢titlexSay hello</titles
il </head:>

8

=l <body >

1e <hl*Hello, from templates</hl>
ihN < /body>

12

il < /hitml>

Make the following changes to the project file. Add render_template to the imports as
shown below.

LURI

o

e

pip install flask

Import the Flask class and render template
10| from flask import Flask, render template

[T =1

Modify the default route.

o

Bapp.route ("/")

def hello world():
Eender an HTML template and return
return render template ("hello.html™)

[T =]

Example run:

Python Web Server with Flask Page 7 of 11 Revised: 3/8/2025

Say hello * +

C @ QO DO 127.0.0.1:5000

Hello, from templates

Tutorial 5: Calculator Project

GET and POST are two different types of HTTP requests. GET is used for viewing something,
without changing it, while POST is used for changing something.

https://www.w3schools.com/tags/ref httpmethods.asp

It is time for a project that actually does something.
1. Create a project folder: Calculator
a. In the project folder create a folder named: templates
2. In the Calculator folder: calculator.py

Add the following code:

Python Web Server with Flask Page 8 of 11 Revised: 3/8/2025

https://www.w3schools.com/tags/ref_httpmethods.asp

LI

[T O P

[2 =9

-1 & N

Fop
#1I

=]

11| % C

(U S |

P

h

I
-1 &nodn

[Xa]

[¥ U 8

. R

[I T I P O T O I T D T D R SR S
W]

Y]

Hame: calculator.py

dathor:

Created:

Purpose: Add 2 numbers together

ip install flask
mport the Flask class, render template, and reguest

com flask import Flask, render template, reguest

reate Flask okject

app = Flask(_ names)

14| # Go to the home or root page

ttp://127.0.0.1:5000/

12| @app.route ("/", methods=["GET", "EPOST"])

home () :
¥ If the reguest is POST
if request.method == "POST":

Get input from user into variables
numl = request.form.get ("numl™)
num? = regquest.form.get ("numz")

Calculate the sum of the two numbers
sum = float (numl) + float (mum2)

Eeturn the results using the variakle sum
in a different webh page.
urn render template ("result.html", sSum=sum)

Otherwise we return index.html with GET
turn render template("indsx.html")

E name = " main ":

app.Iun:dEbua;T::%T_

The following web page uses an html form to get user input using the POST method.

https://www.w3schools.com/html/html| forms.asp

Add index.html to the templates folder.

Python Web Server with Flask Page 9 of 11

Revised: 3/8/2025

https://www.w3schools.com/html/html_forms.asp

<I1DOCTYPE html:
<html lang="en":

Ll P =

B

<head>
<meta charset="UTF-8"%>
¢titlexAddition Calculator</title>
LS heads

Ln

o

~l

ca

9

<body>
<hl>Add Two Mumbers</hl>
<form action="/" method="POST">

<button type="submit">Add</button:
<fform>
A < /body>

</htmlz>

<input typE=“number“ step="any" name="numl"™ placeholder="Enter numl"™ id=""3>
<input type="number" step="any" name="num2" placeholder="Enter numz" id=""3

The following web page displays the variable sum from the Flask code.

Add result.html to the templates folder.

<DOCTYPE htmlx
<html lang="en">

LEN R S]

B

<head>
<meta charset="UTF-8">
¢titlerResult</titles
<Sfhead>

Ln

[y}

s}

8

V]

<body>
¢h1>The result is {{sum}}</hl>
</body>

&

=
[RT

</ html>

Example run:

Additicn Calculater ® +

C @ QO DO 127.0.0.1:5000

Add Two Numbers

100.25 C |[23.89 C |[add)

Python Web Server with Flask Page 10 of 11

Revised: 3/8/2025

Result b4 +

= C @ O DO 127.0.0.1:500C

The result is 124.14

Assignment Submission

1. Attach all tutorials and assignments.
2. Attach screenshots showing the successful operation of each tutorial program.

3. Submit in Blackboard.

Python Web Server with Flask Page 11 of 11 Revised: 3/8/2025

